Publications

1. C. Bertoglio, C. Conca, D. Nolte, G. Panasenko and K. PileckasJunction of models of different dimension for flows in tube structures by Womersley-type interface conditionsSIAM J. Appl. Math., Vol. 79, No. 3, 959-985, 2019, https://epubs.siam.org/doi/abs/10.1137/18M1229572

 

2. T. Dobroserdova, F. Liang, G. Panasenko and Y. Vassilevski, Multiscale models of blood flow in the compliant aortic bifurcationApplied Mathematics Letters 93, 98–104, 2019, https://www.sciencedirect.com/science/article/pii/S0893965919300448

 

3. G. Panasenko, B. Vernescu, Non-Newtonian flows in domains with non-compact boundariesNonlinear Analysis 183, 214–229, 2019, https://www.sciencedirect.com/science/article/pii/S0362546X1930015X

 

4. M. V. Korobkov, K. Pileckas,  R. Russo, Solvability in a finite pipe of steady-state Navier–Stokes equations with boundary conditions involving Bernoulli pressure (accepted to "Calculus of Variations and Partial Differential Equations").

 

5. R. Juodagalvytė, G. Panasenko, K. Pileckas, Time periodic Navier-Stokes equations in a thin tube structure (accepted to "Boundary value problems").

 

6. K. KaulakytėK. PileckasNonhomogeneous boundary value problem for the time periodic linearized Navier-Stokes system in a domain with outlet to infinity (submitted to "Journal of Mathematical Analysis and Applications").

 

7. G. PanasenkoK. PileckasPeriodic in time flow in thin structure: equation on the graph (submitted to "Journal of Mathematical Analysis and Applications").

 

8.  É. Canon, F. Chardard, G. Panasenko, O. Štikonienė, Numerical solution of the viscous flows in a network of thin tubes: equations on the graph (submitted to "Journal of Computational Physics").

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies. More information